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Abstract

We discuss the representation theory of non-abelian charges in physics, particularly

magnetic monopoles, defined analogously to the well known case of electromag-

netism. We start by presenting examples of charges and their emergence from phys-

ical symmetries. Next, we present concepts of representation theory that allow to

generalise the discussion to non-abelian symmetries. We proceed to discuss charge

in gauge theories, the distinction between electric and magnetic charges, and their

relation through the Dirac quantisation condition. Lastly, using the tools developed

in the previous chapters, we discuss how quantisation conditions can be derived for

non-abelian charges.
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Chapter 1

Introduction

1.1 Magnetic monopoles

Magnetic monopoles have been a topic of interest in theoretical physics for many

years, and are some of the most elusive particles physicists have ever tried to de-

tect. The idea of a magnetic monopole is not new, and has been around since the

early days of electromagnetism [1]. This is not surprising, as a simple inspection of

Maxwell’s equations shows that addition of magnetic charge would make them sym-

metric under the exchange of electric and magnetic fields. Dirac was also concerned

with this, and was convinced that monopoles must exist. In 1931, he argued that

in quantum mechanics the existence of a single magnetic monopole would imply

the quantisation of electric charge, thus providing a theoretical explanation for this

known experimental fact [2]. However, despite the theoretical arguments in favour of

their existence, monopoles have yet to be detected. This is not for lack of trying, as

many experiments have been conducted to detect them. In the eighties, the search

for monopoles was a hot topic, since grand unified theories predicted their existence.

Polyakov and ′t Hooft showed that magnetic monopoles follows from general prin-

ciples in theories that unify the fundamental forces [3, 4]. In the late seventies to

early eighties, two candidates for monopoles were detected [5, 6]. However, these
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CHAPTER 1. INTRODUCTION

experiments were never replicated and are now considered to be spurious [7, 8]. In

a 1981 letter to Abdus Salam, Dirac wrote that he was disillusioned with the search

for monopoles, as no significant experimental progress had occurred since his 1931

paper [9, 10]. Currently, charge quantisation is explained by anomaly cancellation in

the standard model [11], or, in the case of grand unified theories, by the compactness

of the gauge group [12]. Despite this, and even discounting grand unified theories,

there are valid reasons to believe that monopoles exist. First of all, monopoles would

most likely be very massive particles, with an estimated mass of 1016GeV. They

would be extremely hard to detect, both in the laboratory and even from cosmic

rays [13, 8]. The only events that could most likely generate such massive particles

would have happened in the early universe, making their detection a cosmological

issue [14, 15]. In fact, the study of monopoles even led to advancements in cos-

mology, such as the inflationary model [16, 17]. However, magentic charge is not a

concept that has to be restricted to electromagnetism. Other theories, such as the

one of the strong interaction, are also described by a gauge principle, and have a

similar structure to electromagnetism, the difference being that their gauge group

is non-abelian. The additional degrees of freedom in these theories behave roughly

like multiple electromagnetic fields, but the non-commutativity of the group makes

the situation more complex, as the fields can interact with each other. It is worth

studying how magnetic monopoles can be understood in these theories, and what

their properties are. They might in fact tell us much about the structure of the

theory itself.

1.2 Generalising charges

There are several questions that arise in the attempt to generalise magnetic charge

to non-abelian gauge theories and gravity. One of which is perhaps the most ob-

vious, if we are to even begin, is to ask what qualities of magnetic charge must
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CHAPTER 1. INTRODUCTION

be generalised, and which ones are instead unique to electromagnetism. The pres-

ence of multiple generators in non-abelian gauge theories offers the opportunity

for more structure, but their non-commutativity brings additional restrictions. For

example, non-commuting generators cannot be simultaneously diagonalised, which

means that not all charge operators are compatible. However, before considering

magnetic charge, it is important to understand what is meant by charge in general,

and how the more familiar electric charge is understood, as even this is not imme-

diately obvious. As an example, consider the case of the strong interaction, which

can be understood as a gauge theory of the group SU(3). In this case, there is not

a single charge, but a triplet of “colour” charges. Anti-particles carry anti-colour

charge, and the force is mediated by vector bosons - gluons - which carry both colour

and anti-colour charge [18]. There are, as we would expect, 8 gluons, as SU(3) has

8 generators. One would expect there to be 8 charges, one for each generator. Why

then do we only see 3 charges and 3 anti-charges? And why do gluons carry both a

charge and an anti-charge? The discussion in Chapter 2 will shed some light on these

questions, clarifying how charge can be understood for non-abelian groups through

the language of representation theory. We will then move on to gauge theories in

Chapter 3, where charge plays a central role, and “electric” and “magnetic” charges

can be defined. Through the language of representation theory, Dirac’s quantisa-

tion condition can be beautifully extended to the non-abelian case, and offer some

insights on the structure of gauge theories.
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Chapter 2

Understanding Charge

2.1 What is Charge?

Physicists might talk about charge in different contexts, but there is one property

that is always present: it is a conserved quantity. Undergraduate students first

encounter this when studying electromagnetism, where the conservation of charge

is expressed by the continuity equation:

∂µj
µ = 0 (2.1)

Later the student might learn that this is a consequence of Noether’s theorem, which

states that for every continuous symmetry of the action there is a conserved quantity.

Noether’s theorem (field theory)

Given a continuous symmetry of the action S =
∫
d4xL(ϕ, ∂µϕ, xµ), the conserved

current is given by:

jµ =
∂L

∂(∂µϕ)
δϕ− Lδxµ (2.2)

where δϕ is the transformation of the field and δxµ is the transformation of the

coordinates. The conservation of the current is expressed by the continuity equa-

tion (2.1).
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CHAPTER 2. UNDERSTANDING CHARGE

In the case of electromagnetism, this is a U(1) gauge symmetry. This is the first of

many results in physics which link symmetry and conservation laws, hinting at a deep

connection between the two. The same can be seen in a Hamiltonian formulation

of classical mechanics, where the conserved quantities are the generators of the

symmetries of the system. If a quantity is conserved in time, its Poisson bracket

with the Hamiltonian is zero:

dA

dt
= {A,H} = 0 (2.3)

This quantity also generates a symmetry transformation of the system which leaves

the Hamiltonian invariant:

δq = ϵ{q, A} (2.4)

δp = ϵ{p,A} (2.5)

And through the correspondence principle [19], we can see that the same is true in

quantummechanics, where we get conserved quantities from operators that commute

with the Hamiltonian.

Correspondence principle

The correspondence principle states that the classical limit of a quantum system

is given by the expectation values of the operators in the quantum system. In

particular, the commutator of operators in the quantum system corresponds to the

Poisson bracket of the corresponding classical quantities:

1

iℏ
[Â, B̂]→ {A,B} (2.6)

This is most obvious in the Heisenberg picture, where the time evolution of an
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CHAPTER 2. UNDERSTANDING CHARGE

operator is given by the commutator with the Hamiltonian.

dÂ

dt
=

1

iℏ
[Ĥ, Â] (2.7)

As charges are compatible with time evolution, the eigenvalues of these operators

are normally used to define “quantum numbers” that label the states of a system.

Thus, both from classical and quantum mechanics, we know that:

• charge is a conserved quantity

• charge generates a symmetry of the system

• charge provides a label for the states of the system

There is a great mathematical tool that allows to understand these properties in a

more general context, and that is representation theory. Quantum mechanically a

symmetry is represented by a unitary operator Û(g) = exp(iQ̂) that commutes with

the Hamiltonian: [Û(g), Ĥ] = 0. The infinitesimal generator Q̂ of the symmetry

is Hermitian and has constant eigenvalues, thus for each symmetry we have a set

of Hermitian operators that commute with the Hamiltonian, and so are conserved

quantities. As seen in the next section, Û(g) is an element of a unitary representation

of the symmetry group, while Q̂ are from a representation of the Lie algebra of the

group.

2.2 Charge as a representation

The fundamental relationship between charge and symmetry stands in represen-

tation theory [20]. Representation theory concerns itself with the study of group

actions on vector spaces, and provides a powerful tool to understand the symmetries

of a system. In the context of quantum mechanics, we care about unitary represen-

tations [19], and the vector space in question is the Hilbert space H of the system.
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CHAPTER 2. UNDERSTANDING CHARGE

The power of representation theory is that it allows to classify how different states

transform under the action of the symmetry group, thus allowing a priori statements

on the objects allowed in a theory based on general considerations. We will see that

charge appears naturally as such a label. For elements close to the identity g ≈ e,

a representation can be expanded as:

π(g) = 1+ iQ ≈ eiQ (2.8)

Where the matrix Q ≈ 0. For a unitary representation π(g)†π(g) = 1, so Q = Q†

is Hermitian. Thus, the unitary representation of the action of G on a quantum

mechanical system naturally provides a set of Hermitian operators Q on H. Given a

continuous symmetry in quantum mechanics, we automatically get a set of physical

observables! What is more remarkable is that many observables that arise this way

are of physical interest [20]. As they carry out infinitesimal group actions on the

Hilbert space, these observables live in representations of the Lie algebra of the

group, thus, when physicists say a particle is charged under a symmetry, they mean

it transforms under a certain representation of the group, labelled by the charge.

However, this is not yet the full picture: there are additional complexities that we

have not yet addressed. These will be explored in the context of non-commutative

symmetries, in Section 2.3.

2.2.1 Abelian symmetries

Let us consider the simplest case of a continuous abelian, or commutative, symmetry.

Examples of such a symmetry are the time symmetry in quantum mechanics, or the

U(1) phase symmetry in electromagnetism. For a simple abelian symmetry, there is

only one generator, the charge operator Q̂. The Hilbert spaceH here is 1 dimensional

8



CHAPTER 2. UNDERSTANDING CHARGE

and the unitary representations of G are given by:

π(θ) = eiθQ̂ (2.9)

Writing the action of π(θ) on a state |ψ⟩ as π(θ) |ψ⟩ = eiθQ̂ |ψ⟩, we identify the

eigenvalues of Q̂ as the charges of the system: Q̂ |q⟩ = q |q⟩. For a U(1) phase

symmetry, we know ei2πq |ψ⟩ is physically equivalent to |ψ⟩, which implies q ∈ Z, thus

the allowed values of the charge are quantised 1. Meanwhile, the time symmetry has

no such restriction, and the charge can take any real value. The difference between

these two symmetries is in the global features of the group, which is compact in the

former and non-compact in the latter. This is reflected in the allowed values of the

charge, which are continuous in the former and quantised in the latter.

2.2.2 A non-commutative example: SU(2)

With the group SU(2) things get more interesting. Its Lie algebra is the simplest

non-abelian Lie algebra, and has 3 generators. Angular momentum arises as the

conserved charge in the presence of an SO(3) spatial rotational symmetry. Quantum

mechanically, rotations are described by a unitary operator Û(θ, ϕ, ψ) which is a

representation of an SO(3) element and can be obtained by the exponentiation

of infinitesimal rotations, generated by the Hermitian operators Ĵi, the angular

momentum operators. These form a representations of the Lie algebra so(3), and

satisfy the commutation relations [21]:

[Ĵi, Ĵj] = iℏϵijkĴk (2.10)

In principle, as discussed in Section 2.2, these operators correspond to physical

observables of the system. However, the relations (2.10) imply that they cannot be

simultaneously diagonalised, and thus only one component of angular momentum

1If we allow for projective representations, then this is not the case.
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CHAPTER 2. UNDERSTANDING CHARGE

can be measured at a time. There is however another Hermitian operator that

commutes with all the Ĵi, the Casimir operator:

Ĵ2 = Ĵ2
1 + Ĵ2

2 + Ĵ2
3 (2.11)

Since Ĵ2 commutes with all the Ĵi, it commutes with all group elements and is

thus invariant under the action of the group. By Schur’s lemma [22], it must be a

multiple of the identity for any irreducible representation. A Hilbert space can thus

be constructed with the following procedure: define the (not Hermitian) operators

Ĵ± = Ĵ1 ± iĴ2, which satisfy the commutation relations:

[Ĵ3, Ĵ±] = ±ℏĴ± (2.12)

These form a basis for the complexified Lie algebra sl(2,C), we will see later that

this complexification is important. They have the property that for a Ĵ3 eigenstate

Ĵ3 |m⟩ = m |m⟩, the action of Ĵ± is:

Ĵ3Ĵ± |m⟩ = (m± 1)Ĵ± |m⟩ (2.13)

meaning that the action of Ĵ± is to raise or lower the eigenvalue of Ĵ3 by one unit.

If we require a finite dimensional representation of so(3), there must be a maximum

value j of m for which Ĵ+ |j⟩ = 0. This provides a label for the representation and

can be proven that this label is unique. Similarly, there must be a minimum value

−j′ for which Ĵ− |−j′⟩ = 0. Since the algebra (2.12) is symmetric under the exchange

Ĵ+ ↔ Ĵ−, we have that j = j′. Equation (2.12) and the trivial [Ĵz, Ĵz] = 0 tell us

that the complex vector space spanned by Ĵ±, Ĵz is split into eigenspaces of Ĵz.

By Schur’s lemma, these are 1-dimensional, and the representation is completely

determined by the highest weight state. Thus, we can distinguish two pieces of

information:
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CHAPTER 2. UNDERSTANDING CHARGE

• the maximum value of the charge j depends on the representation

• the allowed values of the charge are the eigenvalues m of Ĵz which range from

−j to j.

2.3 Elements of Representation Theory

To better understand these concepts, it is useful to introduce the language of rep-

resentation theory, which concerns itself with the study of group actions on vector

spaces. Here, we will focus on representations of Lie groups, as mathematical objects

used to describe continuous symmetries of a system.

Lie Group

Definition 2.3.1. A Lie Group G is a set of transformations labelled by continuous

parameters that forms a group under composition. That is, there is a binary opera-

tion G×G→ G that is continuous and associative, an identity element e ∈ G and

an inverse g−1 ∈ G for each g ∈ G such that gg−1 = e.

While groups are abstract mathematical objects, we would like to study how they

emerge in real physical systems. Representation theory is the study of how groups

can be concretely realised.

Representation of a Lie Group

Definition 2.3.2. A finite dimensional complex representation (π, V ) of a Lie group

G is a map π : G→ GL(n,C) that preservers the group structure (it is a homomor-

phism). V is a n dimensional vector space the representation acts upon, also called

a G−module. For an element g ∈ G, its representation acts on v ∈ V as π(g)v. The

representation is unitary if π(g) is unitary for all g. A representation is faithful if

π is injective, that is, if there is an isomorphism between G and π(G) as a group.

Each G-module defines a representation of the group, which can be explicitly realised
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CHAPTER 2. UNDERSTANDING CHARGE

by choosing a basis for V An important notion is the one of reducibility, which allows

decomposing a representation into simpler ones. If some subspace of the module is

invariant under the action of the group, then the representation is reducible.

Irreducible representation

Definition 2.3.3. A representation (π, V ) is irreducible if there are no non-trivial

invariant subspaces of V under the action of G.

Reducible (unitary) representations can be decomposed into a direct sum of irre-

ducible representations [22], hence by classifying the irreducible representations of a

group we can classify all representations. As a concrete example of representations,

consider the group SO(3), the group of rotations in 3 dimensions. Representation

theory can tell us all the way an object can transform under rotations: some objects

do not change, like a sphere, which will be mapped by itself under any rotation,

they are said to be in the trivial representation. A cylinder instead will be mapped

to itself only under rotations around its axis, thus it transforms under a different

representation of the group. There can also be objects are not invariant under any

rotation, like a vector, which will be mapped to a different vector under any rota-

tion, this is the first faithful representation of the group. Objects obtained from two

vectors, like a dot product or a vector product, will transform under yet different

representations of the group. And so on. Infinitesimal transformations as seen at

the start of 2.2 can be described by the Lie algebra of the group:
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Lie algebra

Definition 2.3.4. The Lie algebra g of a Lie group G is the tangent space at the

identity TeG. It is a vector space with a binary operation called the Lie bracket

[·, ·] : g× g→ g. The Lie bracket satisfies the Jacobi identity and is antisymmetric.

The connected component of the identity of a Lie group is uniquely determined by

its Lie algebra. This is a consequence of the exponential map, which maps the Lie

algebra to the group: g = eX for X ∈ g. By choosing a basis T i for the Lie algebra,

we see the group is generated by these elements g = eiθiT
i
.

The generators essentially represent directions in the group manifold. Lie algebras

also have representations, which are defined analogously to group representations.

Furthermore, a G-module is also a g-module, since the action of the group on the

module can be exponentiated to the action of the Lie algebra:

π(g)v = eiXv (2.14)

We have infinitesimally:

π(g)v = 1v + iXv (2.15)

The Lie algebra is also its own module, with an action given by the Lie bracket.

This corresponds to the adjoint representation of the group. One thing has to be

clear, representation theory does not tell us what the object is, or if it exists at

all. It can only tell us all the types of objects that are allowed by the symmetry

of a theory. Nevertheless, it is an extremely powerful tool at our disposal to study

possible theories and their particle content.

Simple Lie algebras

It is useful to define a special class of Lie algebras

13
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Simple Lie algebra

Definition 2.3.5. An ideal is a subalgebra h ⊂ g such that [H,X] ∈ h for any

H ∈ h and X ∈ g.

Definition 2.3.6. A Lie algebra is simple if it has no non-trivial ideals.

A semi-simple Lie algebra can thus be defined as a direct sum of simple Lie algebras:

g = g1 ⊕ . . .⊕ gn (2.16)

Thanks the work of Cartan and Killing, we have a full classification of the com-

plexified semi-simple Lie algebras and their irreducible representations [23]. Their

classification has different ingredients, which we will now introduce.

Cartan subalgebra

Definition 2.3.7. The Cartan subalgebra h of a Lie algebra g is defined as a maximal

abelian subalgebra:

• [Hi, Hj] = 0 for all Hi, Hj ∈ h

• if [Hi, X] = 0 then X ∈ h

The rank r of a Lie algebra is the dimensions of the Cartan subalgebra, equivalently,

and more relevant for quantum mechanics, it is the maximum number of mutually

commuting generators!

Since G has r commuting generators, it is useful to consider the simultaneous eigen-

vectors under some representation: These define the invariant subspaces of g under

the action of h, which are called weight spaces.
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Weight space

Definition 2.3.8. Given a representation (π, V ) of the Lie algebra g, and a vector

v ∈ V, v ̸= 0 such that:

π(Hi)v = miv (2.17)

for each generator of the Cartan subalgebra Hi, i ∈ {1 . . . r}. The vector v is called a

weight vector, and the space of all v for a given weight µ = {mi} is its weight space.

The multiplicity of a weight is the dimensions of the weight space.

The weight µ can be considered a vector in the dual space of the Cartan subalgebra,

h∗. Its associated weight space is denoted Vµ. We note that since we are considering

complexified Lie algebras, and irreducible complex representations of abelian Lie

algebras are 1-dimensional, the weight spaces are all 1-dimensional. This is the

reason we considered the complexification of the Lie algebra. The Lie algebra itself

is a module for the group, and the representation that acts upon it is the adjoint

representation, with the action being the lie bracket. This allows to define the

adjoint weights α = {ai}:

[Hi, X] = aiX (2.18)

for X ∈ g. The nonzero adjoint weights are conventionally called roots, while the

elements X are called root vectors. The cartan generators Hi are weight vectors

with weight 0, so conventionally they are excluded from the root vectors. The roots

allow the decomposition of the Lie algebra into a direct sum of root spaces:

g = h⊕
⊕
α

gα (2.19)

Cartan’s theorem states that the highest weight of an irreducible representation

uniquely classifies it, thus we can describe all irreducible representations by their

highest weight [22, 23]. This is what allowed us in the case of SU(2) in Section 2.2.2

to classify the representations by the maximum value of the charge. An important
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lemma [22] allows to generalise raising and lowering operators from Section 2.2.2:

Lemma 2.3.9. Let α = {ai} and its corresponding root vector Xα, let π be a

representation of the Lie algebra g and µ = {mi} be a weight for π and v ̸= 0 be its

root vector

π(Hi)π(Zα)v = (mi + αi)π(Zα)v (2.20)

Thus either π(Zα)v = 0 or π(Zα) is a new weight vector with weight µ+ α

This can be easily seen by applying the commutation relations (2.18) to the repre-

sentations of Hi and X. We can thus deduce three things:

• weights are real, since they are eigenvalues of Hermitian operators

• weights are quantised

• weights label subspaces of the Hilbert space that are invariant under the action

of the Cartan subalgebra

Killing form

We can define an inner product on the Cartan subalgebra by:

⟨X, Y ⟩ = Tr(ad(X)ad(Y )) (2.21)

Where ad(X) refers to the adjoint representation of the element X. This is called

the Killing form. It also induces an inner product on the dual space of the Cartan

subalgebra, h∗:

⟨µ, ν⟩ =
∑
i

µiνi (2.22)

Since in the next sections we will be using different kind of bilinear forms, it is useful

to clarify their difference and distinguish them.
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• ⟨µ,H⟩ = µ(H) is the action of an element µ ∈ h∗ on an element H ∈ h defined

by (2.17)

• ⟨µ, ν⟩ is the inner product of two elements of h∗ defined by (2.22)

• ⟨X, Y ⟩ is the inner product of two elements of g defined by (2.21)

Cartan-weyl basis

Figure 2.1: The root diagram of su(3)C ∼= sl(2,C).

A Cartan-weyl basis is a convenient choice of basis for a Lie algebra that makes the

roots explicit in the structure constants. For a rank r Lie algebra we have r Hi

Cartan generators and d − r Eα remaining generators. The commutation relations

are:

[Hi, Hj] = 0 (2.23)

[Hi, Eα] = αiEα (2.24)

Using the Killing form and the Cartan-weyl basis, we can define the weight and root

diagram of a group by plotting the real subspace of h∗ spanned by the weights and

roots. This is shown in 2.1 for the case of su(3).
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Weight and root lattice

The weights of a Lie algebra span a lattice in h∗, defined by the inner product (2.21).

This is the weight lattice Λµ. Similarly, the roots span a lattice Λα, which is a

sublattice of the weight lattice.

Figure 2.2: The weight and root lattice of su(3), generated respectively by the

fundamental weights µ1,2 and the simple roots α1,2.

Weyl group

The Weyl group is a discrete group that acts on the weight space of a Lie algebra.

It is generated by the reflections through the hyperplanes orthogonal to the roots.

An element of the Weyl group associated to a root α is denoted sα and is defined

by:

sα(µ) = µ− 2⟨µ, α⟩
⟨α, α⟩

α (2.25)

Coroot lattice

We can also define co-roots by the property:

⟨α∨, α⟩ = 2 (2.26)

Which gives the co-roots as:

α∨ =
2α

⟨α, α⟩
(2.27)
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Equation (2.26) allows us to recognise the co-roots as elements of the dual space

of h∗, which is the Cartan subalgebra itself. Since the co-roots generate the Weyl

group reflections in (2.25) which map the weight space to itself, we must have:

sα(µ) = µ− ⟨µ, α∨⟩α ∈ h (2.28)

And since the weights differ by integral multiples of the roots, we have the property:

⟨µ, α∨⟩ ∈ Z (2.29)

Co-roots define the co-root lattice Λα∨ , which is the dual lattice of the root lattice.

2.4 Colour and SU(3)

The above concepts help us generalise what we saw in 2.2 to the case of other non-

abelian symmetries. Here we will consider the case of SU(3) and give a concrete

example of how charges arise from this symmetry. We saw how for SU(2) the set of

mutually commuting generators has 1 element Jz, which allows to split the Hilbert

space into eigenspaces of Jz labelled by their charge. The same happens for SU(3),

but now the largest set of commuting generators has 2 elements, which we call H1

and H2. This is the Cartan subalgebra of su(3). We choose the basis [22]:

H1 =

1 0 0
0 −1 0
0 0 0

 H2 =

0 0 0
0 1 0
0 0 −1

 (2.30)

Now each state is labelled by its simultaneous eigenvalues of H1 and H2 and the

charge becomes an ordered pair of numbers µ = (m1,m2). We can explicitly find

eigenstates in the Hilbert space of a particle in the fundamental representation:

v =

rg
b

 (2.31)
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Giving the eigenvalues:
v =

(
r 0 0

)
with µr = (1, 0)

v =
(
0 g 0

)
with µg = (−1, 1)

v =
(
0 0 b

)
with µb = (0,−1)

(2.32)

These justify the choice of the rgb labels for the components, as they correspond to

eigenstates with a specific “colour” charge. From a representation theory perspec-

tive, the Lie algebra representation (SU(3) fundamental) can be split into multiple

representations irreducible under the subalgebra h spanned by H1 and H2:

3 = 1⊕ 2 (2.33)

The charges also have the expected property that a bound state of rgb is in the

trivial representation (has weights (0, 0)) as seen by taking µr +µg +µb = 0 We can

also choose the anti-fundamental representation:

v̄ =

r̄ḡ
b̄

 (2.34)

On which H1,2 acts as −HT
1,2. Giving:

v̄ =
(
r̄ 0 0

)
with µr̄ = (−1, 0)

v̄ =
(
0 ḡ 0

)
with µḡ = (1,−1)

v̄ =
(
0 0 b̄

)
with µb̄ = (0, 1)

(2.35)

One can also note µr+µr̄ = µg+µḡ = µb+µb̄ = 0 meaning a cc̄ state is bound. Also

note that the colours and anti-colours are not independent, for example µr+µg = µb̄.

From this we can notice that the SU(3) adjoint representation can be built from the

fundamental and the anti-fundamental 3⊗ 3̄ = 8⊕ 1 which leads to the conclusion

that gluons (particles in the adjoint representation) should have a colour and an

anti-colour. In fact we could choose a basis which makes color explicit for the gluon

gauge fields Aa
µ by considering the generators T a

cc̄ (which have a colour and anti-

colour index because of the above) so that Aa
µT

a
cc̄ = Aµcc̄ In the SU(2) case above

the gauge field would instead have two isospin charges as (for SU(2)) 2⊗2 = 3⊕1.
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Figure 2.3: The weight diagrams of the fundamental, anti-fundamental and adjoint

representations of su(3), marked with colour labels to show the correspondence with

the rgb charges and their anti-charges. These sum as vectors in h∗, showing that

adjoint states have both a charge and an anti-charge. Although there are three

combinations that give a weight of (0, 0), only two of there are linearly independent,

as they correspond to linear combinations of the the (degenerate) adjoint weights of

the Cartan subalgebra generators.

There is no anti-spin because 2 ≡ 2̄. This analysis shows that a consistent candidate

for charge would be the set of weight eigenvalues. While a field can be “charged”

under a group, that is transform in a certain representation, the actual value of the

charge is the weight, which is conserved as the generators of h commute with the

hamiltonian. They correspond to subspaces of the Hilbert space, which are invariant

under the action of the Cartan subalgebra. Under the right choice of basis for the

Hilbert space the charge eigenstates can be made to correspond with the components

of the chosen representation like in the case above. Different representations like the

adjoint or other higher dimensional ones can be built from the fundamental, anti-

fundamental and/or the adjoint, and their charges can be found by a simple addition

of weights. The name “fundamental” weights is telling because they are the simplest

charges that can be found under a symmetry. A discussion can be carried out for

any Lie group, including product groups like the Lorentz group which has rank 2 Lie

algebra SU(2)×SU(2). The group representations are labelled with two spins (j1, j2)
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and correspond to right and left handed spinors, vectors, self-dual and anti-self-dual

2-forms, etc.

2.4.1 Simply connected groups

A theorem by Cartan and Killing [22, 23] states that complex Lie algebras are

semisimple if and only if they are isomorphic to the Lie algebra of a compact and

simply connected Lie group. This result implies that a general compact Lie group

can be written as:

G =
Gs × U(1)n

Z
(2.36)

Where Gs is a simply connected group and Z is a discrete subgroup of its centre.

Centre of a group

Definition 2.4.1. The centre of a group G is the set of elements that commute with

all elements of the group:

Z = {z ∈ G|zg = gz ∀g ∈ G} (2.37)

It is a normal subgroup of G.

It is important to note the physical implications of this result, particularly the pos-

sibility of a quotient by a discrete subgroup. At the level of the Lie algebra the

groups G and G/Z are isomorphic: the difference is all in the global properties of

the group. However, this can very well have physical implications, as the global

properties determine the allowed representations of the group. We encountered this

when discussing the groups SO(3) and SU(2), corresponding to angular momentum

and spin. The only way to distinguish between the two is that we know experimen-

tally that the half-integer representations of SU(2) are physically realised in the case

of spin. In the case of angular momentum instead they do not correspond to any

physical object [21], and only representations that are invariant under the centre Z2
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are allowerd. A similar situation can be found in the case of SU(3), and is relevant

for Yang-Mills theory. Pure Yang-Mills theory only has gauge bosons, which are

in the adjoint representation of the group, these are invariant under the action of

the center of the group, thus the gauge group of Yang-Mills could be SU(3)/Z3.

However in the standard model there are also quarks in the fundamental and anti-

fundamental representation, which are not invariant under the centre of the group,

thus the gauge group of the strong interaction in the standard model must be SU(3).
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Charge in Gauge Theories

3.1 Electromagnetic charges

So far charge has been described purely in terms of the representation theory of a

given group. Energy, momentum, angular momentum, spin and particle number are

all examples of charges under this general definition. However, the charges involved

in the fundamental interactions have more to them than just the representation

theory. It is only in this context that a distinction between electric and magnetic

charge is possible. Coming from classical electromagnetism, nothing other than

experimental evidence suggests that magnetic monopoles shouldn’t exist. Maxwell’s

equations read [24]:

∇ · E = ρ ∇× E + Ḃ = 0 (3.1)

∇ ·B = 0 ∇×B − Ė = j (3.2)

Or in relativistic notation:

∂µF
µν = −jν (3.3)

∂µF̃
µν = 0 (3.4)
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Where Fµν = ∂µAν − ∂νAµ is the field strength tensor, F̃µν = 1
2
ϵµναβF

αβ is its dual,

and jν is the 4-current. As we can see from the first equation in (3.1), a point-like

charge q at the origin sources an electric field E = q
r2
r̂. Analogously, a hypothetical

magnetic monopole g would source a magnetic field B = g
r2
r̂. However, this is

prohibited by the first equation in (3.2), which states that the divergence of the

magnetic field is always zero. We note the suggestive duality in the equations (3.1)

and (3.2) under the exchange E ←→ B when sources are not present. Quoting

Gell-Mann “Everything that is not forbidden is compulsory” [25]. It is extremely

tempting to extend this duality to the case with sources, and nothing stops us from

a priori introducing a magnetic current kν

∂µ ⋆ F
µν = kν (3.5)

When the theory is formulated from a gauge principle however, this duality between

electricity and magnetism is broken. By positing Fµν = ∂µAν − ∂νAµ Now the

homogeneous equations are simple mathematical identities, thus magnetic charge is

incompatible with a globally defined gauge potential. Here lies one of the difficulties

in the construction of a theory of magnetic monopoles, as in this formulation the

distinguishing feature of magnetic charge relies on its most undesirable properties.

It is unclear how one would go about defining an action whose equations of motion

include equation (3.5).

3.1.1 Magnetic monopoles

Although a description of electromagnetism using a gauge potential Aµ initially

seems incompatible with magnetic monopoles, there are in fact ways to allow for non-

zero magnetic flux. One such method was proposed by Dirac in 1931, which involved

the introduction of a singular gauge potential. By allowing the gauge potential to

take different values on either side of a singular line of points, Dirac interpreted
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this singularity physically as an infinitely thin solenoid extending to infinity. This

concept is related to the fact that the Bianchi identities (3.4) can be satisfied locally

but not globally, due to non-trivial topologies that cause the field strength to be

non-closed. Monopoles can also arise in grand unified theories (GUTs), where they

appear as topological solitons, as shown by ′t Hooft and Polyakov in 1974 [3, 4].

They also feature in string theory [26] and Kaluza-Klein theory [27]. Regardless

of the specific mechanism by which magnetic charge is introduced, we will see that

representation theory allows us to make general statements about the compatibility

of electric and magnetic charges.

3.1.2 Dirac quantisation

Dirac was a strong proponent of magnetic monopoles for another reason: the exis-

tence of a magnetic monopole would imply the quantisation of all electric charge [2,

28]. Since, as far as we know, charge in our universe is quantised, this would make

the presence of magnetic monopoles a likely explanation. Dirac’s argument used

the Dirac string, showing that the requirement for it to be unobservable, and thus

unphysical, is exactly the quantisation condition. Corrigan and Olive coupled an

adjoint scalar to the gauge field to generate charged current [29]. Here we present

a simpler argument using the path integral formalism, adapted from Heras’ [30]

and Tong [31], which considers the Aharonov-Bohm [32] phase gained by a mov-

ing charge. We consider the path integral phase picked up by an infinitely massive

probe particle with electromagnetic charge around a magnetic monopole, as shown

in figure 3.1. The minimal Lagrangian that couples a particle of charge Q to the

electromagnetic gauge potential is:

1

2
mẋµ(τ)ẋ

µ(τ)−Qẋµ(τ)Aµ(τ, x) (3.6)
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Figure 3.1: A point particle of electric charge Qmoves in a path γ around a magnetic

monopole of charge M . The path subtends a solid angle Ω.

Consider an infinitesimal path traced by an electrically charged particle. When the

symmetry is gauged, the phase acquired by its wave function over a small path ds

is 1

(1 + iQAµ
dxµ

ds
ds) (3.7)

which can be integrated along a loop γ to obtain

exp

(
iQ

∫
γ

Aµẋ
µ ds

)
(3.8)

The existence of a magnetic monopole of charge M implies that the magnetic flux

through a sphere S enclosing it is

∫
S

B · dS =M (3.9)

1This can be seen by considering the covariant derivative along the path.
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Then equation (3.8) can be when evaluated by noticing γ = ∂S ′ for some surface

S ′ ⊂ S, which subtends the solid angle Ω:

exp

(
iQ

∮
∂S′

A · dx
)

= exp

(
iQ

∫
S′
B · dS

)
= exp

(
iQM

Ω

4π

)
(3.10)

But the surface S ′ shares its boundary with the surface S ′′ subtending solid angle

of 4π − Ω, so:

iQM
Ω

4π
= −iQM + iQM

Ω

4π
(3.11)

Where the orientation of the path must be flipped for the integral over S ′′. This is

the Dirac quantisation condition:

Dirac quantisation

The product of electric and magnetic charge must be quantised in units of 2πℏ:

QM = 2πℏn (3.12)

Where the factor of ℏ has been restored. This condition can be interpreted as

monopoles being the source of the quantisation of electric charge, or as a consistency

condition between electric and magnetic charges.

3.2 Non-abelian gauge theories

The generalisation of electromagnetism to non-abelian gauge theories is a natural

step. The standard model of particle physics is a non-abelian gauge theory with

gauge group SU(3)× SU(2)×U(1) [33]., and the strong force in particular is easily

described as an interaction between objects with colour charge. A non-abelian gauge

theory is defined by a gauge group G and a connection Aµ in the Lie algebra g. The

derivative is replaced by a covariant derivative Dµ = ∂µ − igAµ, where g is the

coupling constant of the theory.
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3.2.1 Coupling charge to the gauge field

From the language developed in 2.2 we know that the “electric” colour charge Q

lives in the weight lattice of the gauge group G, which means that it is an object

in the dual space of the Cartan subalgebra h∗. Meanwhile we can gauge transform

the gauge field to be an element of h and write it as Aµ = Ai
µH

i, where H i are

the generators of the Cartan subalgebra. Since a representation is a linear map and

using equation (2.17) we can write:

π(Ai
µH

i)v = Ai
µq

iv (3.13)

Thus the charge Q couples to the gauge potential as ⟨Q,Aµ⟩, where the product is

intended as the natural pairing between h∗ and h defined in 2.3.

3.2.2 Gauge invariant charge

In 2.4 we explained how for non-abelian groups observable charges can be classified

using representation theory. However, these observables are not invariant under the

action of the group. When the symmetry is a gauge symmetry, these are not gauge

invariant, while the gauge principle demands that only gauge invariant quantities

are physical. In fact, colour charges are not even constant as the particle moves

around space. The evolution of a particle’s color charge in a non-Abelian gauge

field is described by the Wong equations [34, 35], which govern the dynamics of a

classical particle interacting with a gauge field. Specifically, the time evolution of

the colour charge Qa (where a labels the components of the colour charge in the

adjoint representation of the gauge group) is given by:

dQa

dτ
= fabcAb

µQ
cdx

µ

dτ
. (3.14)
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Here, fabc are the structure constants of the non-Abelian gauge group, and Ab
µ are

the components of the gauge field. This equation shows that the color charge Qa

precesses as the particle interacts with the gauge field, leading to a non-constant

charge. The Wong equations make clear that color charge is not a fixed quantity for

a particle moving through space, but rather, it evolves in a manner determined by

the local gauge field configuration. Thus, there is a need for a gauge invariant way

to probe charges in non-abelian gauge theories. This information can be encoded

in the Wilson line operator, Wilson lines represent the holonomy of the gauge field

along a path γ, they tell how the internal degrees of freedom of a particle evolve as

it moves through space, linking spacetime motion to motion in the gauge group.

Wilson line

A Wilson line is a path ordered exponential of the gauge potential along a path γ

with endpoints x and y:

W (x, y) = P exp

(
ig

∫ y

x

Aµdx
µ

)
(3.15)

Where g is the coupling constant of the theory. Wilson lines live in different rep-

resentations of the gauge group G, as they are defined by the action of the gauge

potential Aµ = Aa
µT

a, where the T a can be in any representation of the Lie algebra

g. Wilson lines themselves form a group, the holonomy group, which is isomorphic

to a subgroup of G [36, 37].

Wilson lines are in representations of the gauge group, and thus there is a corre-

spondence between Wilson lines and charges in the theory. They can be used to

construct a gauge invariant operator, the Wilson loop, which is the trace of a Wilson

line along a closed path.

W (γ) = trP exp

(
ig

∫
γ

Aµdx
µ

)
(3.16)
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The Wilson loop operator can be considered as the gauge phase acquired by an

infinitely massive probe particle with colour charge around a loop γ. It is exactly

the quantity obtained by integrating out the internal degrees of freedom of the

particle [31].

′t Hooft lines

Similarly, there are objects that can be used to define magnetic charges, called ′t

Hooft loops. As operators, they are harder to define, as they correspond to the

restriction of the path integral along those loop paths for which the gauge field

satisfies the condition: ∫
S

B · dS =M (3.17)

Where B is the magnetic colour potential, M is the magnetic charge, and both are

now elements of g. These can be interpreted as enforcing the existence of a monopole

with charge M . A ′t Hooft loop operator is the magnetic analogue of the Wilson

loop operator, and is also a gauge invariant object.

3.2.3 GNO quantisation

Using the tools developed so far, it is possible to derive a generalisation of the

Dirac quantisation condition to non-abelian gauge theories. As was first done by

Goddard, Nuyts and Olive in 1977 [38]. It can be easily inferred from that magnetic

charges live in the Lie algebra g like the gauge potential. We note that we can

always gauge transform the gauge potential to the Cartan subalgebra h. This will

similarly restrict the magnetic charge M to the Cartan subalgebra as well and we

can write M = miH i We consider the presence of electric and magnetic charges as

the insertion of Wilson and ′t Hooft lines in the path integral for a particle with
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electric charge Q. Starting from a Wilson line for charge Q we have:

exp

(
iqi

∮
∂S′

Ai · dx
)

= exp

(
iqi

∫
S′
B · dS

)
= exp

(
iQ ·M Ω

4π

)
(3.18)

Giving the condition

Q ·M = 2πn (3.19)

As seen in 2.2, the electric charge Q is an element of the weight lattice of the gauge

group G, while we already know that the magnetic charge M is an element of the

Lie algebra g. The condition above can be realised only for specific elements M of

h, recalling property (2.29), we must have that the allowed magnetic charges are

only multiples of the co-roots of the gauge group G. From the decomposition of

representations of g as h representations we know that for and any weight µ in the

weight lattice:

2
α · µ
α2
∈ Z (3.20)

defining the co-root α∨ = α
α2 then we have µ · α ∈ 1

2
Z. This exactly solves the

condition above by choosing µm = α∨. For a simple lie algebra g, the lattice spanned

by the co-roots is also the root lattice of its dual g∨.

Λα∨(g) = Λα(g
∨) (3.21)

In the case of Lie groups in the A, D, E series g = g∨. Hence, the magnetic charges

must sit in the co-root lattice or g or in the root lattice of g∨. This can be understood

as a condition on the allowed ′t Hooft line operators compatible with Wilson line

operators.

SU(N) vs SU(N)/ZN again

As dicussed in Subsection in 2.4.1, there are more than one theories with the same

Lie algebra, which differ in the global structure by the quotient of the centre of
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the group. This matters for the quantisation above, as for the group SU(N)/ZN

the allowed representations are only tensor products of the adjoint representation,

which is invariant under the centre ZN . Thus we could think of the electric charge as

a vector in the Cartan subalgebra h∨ of g∨, that is, as a co-root of the dual algebra

g∨. This lessens the requirement on the magnetic charge, which now lives in the

root lattice of g∨. In this theory, magnetic and electric charges swap roles. Magnetic

charges now live in the weight lattice Λµ(g
∨), while electric charges live in the root

lattice Λα(g).

Figure 3.2: The Lie algebras of groups in the Bn, and Cn series are dual to each

other: the co-roots of Bn are the roots of Cn and vice versa. In the image, we have

the root systems of B2 and C2, also known as so(5) and sp(4) respectively. These

are accidentally isomorphic so(5) ∼= sp(4), but the same is not generally true for the

other Lie groups in the two series.
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Final remarks

4.1 Summary

In this work, we have investigated how charge is understood thanks to representation

theory. For any symmetry of a theory, we have seen that there is a corresponding

charge, a quantity that is conserved. Classes of particles in the theory can be

classified according to the representations of the symmetry group, while their specific

charges are determined by their decomposition in modules of the cartan subalgebra.

Charged states can be understood as elements of weight spaces, labelled by weights,

which are elements of the dual space of the Cartan subalgebra. These naturally

provide a set of compatible time-independent observable. This led naturally to the

quantisation of charge in the case of compact symmetry groups. In gauge theories,

we have discussed the difference between electric and magnetic charges, and the

properties of magnetic monopoles, which are at first glance excluded by the Bianchi

identities. In the simple electromagnetic case, these can be realised with singular

gauge potentials, like a Dirac string [2, 28], or through topological solitons ı̀ [4, 3].

However, a statement about the compatibility of electric and magnetic charges can

be made regardless of how the monopole is realised, leading to the Dirac quantisation

condition. Then, we regarded the analogue of magnetic monopoles in non-abelian
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gauge theories. We were able to make statements about the representation theory

of these monopoles themselves, establishing that on pure representation-theoretic

grounds, these monopoles can exist when the colour-electric charges obey generalised

quantisation conditions. These conditions can either be interpreted a la Dirac to

infer the quantisation of charge from the existence of a monopole, or as a statement

about the compatibility of electric and magnetic charges. Furthermore, they show

how magnetic charges are intimately related to the nonlocal structure of the gauge

theory, allowing to differentiate between gauge groups with different topological

structures.

4.2 Last words on gravitation

The case of gravity is of particular interest for future investigation. The structure

of gravity as a gauge theory is not well understood, with two different approaches

leading to quite different results. By considering the metric as a spin-2 gauge field,

there has been some success in the linearised regime, leading to similar predictions

as the electromagnetic case [39]. On the other hand we have Einstein-Cartan the-

ory, which can be understood as a gauge theory through the symmetry breaking

of an SO(4, 1) gauge field through a mechanism explained by MacDowell and Man-

souri [40, 41]. This approach seems more promising to understand the non-linear

regime of gravity: by considering massive particles as gravitational Wilson lines [42],

the methods discussed in this work could be applied to the study of gravitational

magnetic charges and mass quantisation. We conclude presenting a possible reason

why the investigation of gravitational magnetic monopoles is of interest: as seen

in 3, monopoles can emerge in non-topologically trivial configurations. It is also

known that monopoles are present in lattice theories [43]. Since there are reasons to

believe that spacetime is in some way fundamentally discrete, the existence of such

monopoles could be a consequence of quantum gravity, and detection could offer

important clues into the structure of spacetime itself.
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