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When Stars Evaporate: Solving the Mystery of the Missing
Red Giants

In the very heart of the Galaxy lies
a supermassive black hole known
as Sagittarius A*. The intense ra-
diation emitted by the black hole
can cause the outer layers of nearby
stars to evaporate, much like water
boiling away in a kettle. This pro-
cess, known as photoevaporation,
could be the key to solve the mys-
terious lack of red giant stars near
the galactic center. Instead of forming a dense cluster as expected, red giant stars seem to
be missing from the region close to Sagittarius A*. This surprising observation contradicts
theoretical models and goes against the normal behaviour of other stars. Scientists have been
looking for a solution to this mystery for decades. Red giants are stars at a late stage of their
life cycle. As stars like our Sun age, they expand and become cooler, eventually transforming
into red giants. These enormous stars have unique properties that make them more susceptible
to photoevaporation. Sagittarius A* is currently in a relatively dormant state, with its accretion
disc emitting much less radiation than in the past. However, it has experienced periods of
intense activity, during which it emitted copious amounts of radiation. Evidence of these past
outbursts can be seen in the form of the Fermi Bubbles, two giant lobes of gas and cosmic
rays extending thousands of light-years above and below the galactic plane. Photoevaporation
occurs when the intense radiation from a black hole’s accretion disc heats the outer layers of a
nearby star. The energy from the radiation is deposited into the star’s atmosphere, causing the
gas to become so hot that it escapes the star’s gravitational pull, evaporating into space. In my
research project, I investigated the potential connection between photoevaporation and the
vanishing red giants near Sagittarius A*. A crucial part of my research involved calculating
the spectrum of radiation emitted by Sagittarius A*’s accretion disc. The results revealed
significant emission in the ultraviolet range, which supports the possibility of photoevaporation
occurring in the vicinity of the black hole during its active periods. To better understand how
photoevaporation might influence the distribution of red giants, I investigated the impact
of this process on their evolution. By developing a model that incorporated the effects of
photoevaporation, I was able to simulate how these stars might change over time as they
lose mass. A key finding of my research was the quantification of mass loss rates for red
giants due to photoevaporation. I discovered that for certain sizes of red giants, the mass loss
rates were significant enough to noticeably affect their evolution and distribution near the
galactic center over the past 10 million years, and even completely evaporate those that got
too close! My research not only enriches our understanding of the evolution of red giants in
the center of our galaxy, but also sheds light on the broader implications of photoevaporation
in other active galactic centres. The mystery of missing red giants is an intriguing challenge
for astrophysicists. By examining the potential influence of photoevaporation, we can gain
valuable insights into the complex interplay between celestial objects in the centres of galaxies.
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Abstract

The observed distribution of red giant stars in the galactic centre deviates from the cusp-like
arrangement predicted by theoretical and computational models. Existing explanations have
thus far proven insufficient to account for this discrepancy. In this thesis, we propose a novel
mechanism, wherein radiation from an accreting supermassive black hole heats the outer
layers of these stars, causing them to eject mass in the form of a Parker wind. Our aim is to
explore whether this photoevaporative process can offer an alternative explanation for the
observed distribution of red giants in the galactic centre. We first calculate the spectrum of
radiation emitted by the accretion disc and subsequently determine the ionisation fraction
outside the star to find the base of the flow. With this knowledge, we apply the solutions
for a steady Parker wind to find the mass loss rate. Our findings align with initial estimates
and reveal that photoevaporation could have a substantial impact on the evolution of red
giants near the galactic centre. We identify a specific region in our parameter space of stars
that experience significant mass loss rates, which could affect their distribution over the span
of 3 million years. This study presents a compelling case for further investigation of the
photoevaporation hypothesis in order to ascertain its role in shaping the distribution of red
giants in the galactic centre, with potential implications for the study of both the Milky Way
and other galaxies.



Contents

1 Introduction 3
1.1 The Galactic Centre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The Problem of Missing Red Giants . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Attempted Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Why Photoevaporation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Model and Theory 8
2.1 Accretion Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Eddington Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Accretion Disc Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The Stellar Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Hydrostatic Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Parker Winds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Density Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Density Profile from Steady Parker Wind . . . . . . . . . . . . . . . . . 14
2.3.2 Density at Photosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Momentum Balance at the Interface . . . . . . . . . . . . . . . . . . . 15

2.4 Ionisation and Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Mass Loss Rate Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 The Star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.1 The Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.2 Stellar Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Calculations 21
3.1 Accretion Disc Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Ionisation Front Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Mass Loss Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Mass Loss Rate Interpolator . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Stellar Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Results and Discussion 26
4.1 The Black Hole Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Mass Loss Rate Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Stellar Evolution Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Distance From the Black Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Implications for Other Galactic Centres . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Other Stellar Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Concluding Remarks 31

Bibliography 32

2



1 Introduction

1.1 The Galactic Centre

The galactic centre is an area of immense interest due to its unique properties and potential
insights into the formation and evolution of galaxies (Genzel et al., 2010). The central region
of our Milky Way galaxy hosts a supermassive black hole with a mass of approximately 4
million times that of our Sun. This black hole, known as Sagittarius A*, or Sgr A*, is located
about 26,000 light-years from Earth, making it one of the closest we can study in detail (Ghez
et al., 2008).

The central region of a galaxy is where most stars are located and where the majority of
the galactic mass is concentrated. The gravitational effects of this mass play a crucial role
in shaping the overall structure of the galaxy, including the formation of spiral arms, the
distribution of dark matter, and the formation of new stars (Dame et al., 2001). Dense
molecular clouds in this region serve as nurseries for new stars, and the high-energy radiation
and winds from massive stars can influence the surrounding environment and affect the
evolution of nearby stars and planets.

Additionally, the region hosts a variety of exotic objects, such as pulsars, X-ray binaries,
and supernova remnants, which can provide valuable insights into the physics of extreme
environments and the life cycle of stars (Muno et al., 2009). Being in such close proximity, the
galactic centre offers a significant opportunity to study and test the inner structure of galaxies
and gain insight into how these processes affect their evolution and history.

The study of the galactic centre also provides unique opportunities to test the laws of physics
under extreme conditions. The strong gravitational field in the vicinity of the black hole offers
an ideal testing ground for theories such as general relativity (Amorim et al., 2019). Observa-
tions of the motion of stars around the black hole have already confirmed the predictions of
general relativity to an unprecedented level of precision, further validating this fundamental
theory of physics (Collaboration, 2021).

Lastly, the study of the galactic centre has important implications for astrobiology and the
search for extraterrestrial life. Understanding the formation and evolution of planets in the
galactic centre, as well as the environmental conditions and radiation levels that exist there,
can help us better understand the potential habitability of exoplanets and the likelihood of
finding extraterrestrial life.

1.2 The Problem of Missing Red Giants

The study of stellar dynamics around massive black holes has been a topic of interest in
astrophysics for several decades. Peebles’ seminal work (1972) found that stars around
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1.2. THE PROBLEM OF MISSING RED GIANTS Chapter 1. Introduction

a massive black hole are arranged in a dynamical steady state. Rather than maintaining
their original orbits, two body gravitational interactions gradually push the system toward
equilibrium, characterised by a stable distribution of stars. The time required to achieve this
equilibrium is referred to as the relaxation time, representing the period needed for the star
population to dynamically relax into the equilibrium distribution. Peebles suggested, using
dimensional arguments, that the number density distribution of stars around the black hole
should follow a power law with distance, forming what is now commonly called a stellar cusp.

n ∝ r−γ (1.1)

Analytical proof was provided later by Bahcall & Wolf (1976) using a Fokker-Planck equation,
a PDE that descrobes the time evolution of the probability distribution of a system (Fokker,
1914). They made several key assumptions to simplify the problem, including isotropy and that
all the stars have identical masses, then solved the equation numerically, obtaining different
values of γ for stars of different masses. The results of their study were further validated by
other studies that used similar formalisms, such as Cohn & Kulsrud (1978) and Amaro-Seoane
et al. (2004).

In addition to analytical approaches, computational efforts have been conducted to confirm
the existence of stellar cusps. Shapiro & Marchant (1978) utilised Monte Carlo methods to
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Figure 1.3: (a) Distribution of young stars (blue) and red giant stars (red), obtained from SINFONI
integral field spectroscopy in the central 0.08pc of the Galaxy. The colors are based on the star’s
spectroscopic identification, which grey stars lack. Image adapted from Genzel et al. (2010). (b)
Star surface density data from Gallego-Cano et al. (2018). The orange line shows the surface
density of young stars as seen from Earth, while the red is the data for red giants. We see a
surprising dip in the central region, marked by a red circle. The y values have been scaled for ease
of visualisation.
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Chapter 1. Introduction 1.3. ATTEMPTED SOLUTIONS

simulate the behaviour of stars around a black hole. N-body simulations, free of simplifications
and assumptions inherent in analytical methods, were performed by Preto et al. (2004) and
Baumgardt et al. (2018).

However, Sellgren et al. (1990) observed that red giants in the Milky Way do not show a
cusp distribution while studying the CO absorption line, a common indicator of giant stars.
While the first observations only relied on luminosity measurements, the recent development
of powerful optical instruments like the SINFONI spectrograph (Thatte et al., 1998) allowed
the counting of individual stars (Bartko et al., 2010; Do et al., 2009). It is now understood
that these stars, instead of forming a cusp, have a distribution that flattens as it approaches
the centre (Genzel et al., 1996). This unexpected distribution has led to what is known as the
”paradox of youth” in the galactic centre (Genzel et al., 2010), challenging our understanding
of the dynamics of stars in this region and raising questions about the processes that may be
responsible for the observed deviation from the predicted distribution.

1.3 Attempted Solutions

The search for an explanation for the missing red giants in the galactic centre has produced
several proposed solutions. The phenomenon has been attributed to either the nonexistence
of the stellar cusp or its hiding from observation. The former has been explained through the
possibility that the cusp was either destroyed or did not have enough time to form (Merritt,
2010). Alternatively, the cusp could be composed of stellar-mass black holes or hidden because
the stars closer to the centre have a lower luminosity (Löckmann et al., 2010).

Of these proposed solutions, the idea that the stellar cusp is hidden has gained more attention.
Red giants, as the next evolutionary stage of solar-mass stars, are large and not very massive,
with a relatively shallow gravitational potential. Coupled with their location in a very dense
star cluster, this fueled the suspicion that processes could strip away the outer layer of these
stars, rendering them much dimmer. Theoretical models by Genzel et al. (1996) and Dale
et al. (2009) attributed this to collisions with main sequence stars and stellar-mass black holes,
respectively. However, their models can only account for the central 0.01 pc of the galactic
centre. In contrast, Amaro-Seoane & Chen (2014) showed how a red giant could be stripped
of its atmosphere and rendered dim enough after a few transits through a star-forming disc.

Other investigations into star-disc collisions include Kieffer & Bogdanović (2016) and Amaro-
Seoane et al. (2020). Kaur & Sridhar (2018) found that the gravity of an accretion disc can
distort the cusp and flatten the central area, while also deforming the orbits of the stars so
that they spend more time near the disc plane, thus increasing the odds of being stripped of
their outer layers. Another possibility is that the gravitational forces close to the supermassive
black hole could tear the atmosphere away from the red giants that get too close, a process
called tidal stripping, which was proposed by Bogdanović et al. (2014).

A recent proposal by Zajaček et al. (2020a,b) attributes the loss of material to activity from
Sgr A*. According to their proposal, jets coming from the supermassive black hole could
remove material from the star, in a process they called jet ablation. However, as jets are very
collimated, they would affect only a fraction of the stars.
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1.4. WHY PHOTOEVAPORATION? Chapter 1. Introduction

Collision with
stellar mass
black holes

Collision with
main sequence stars

Jet
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Tidal
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Star-disk interactions
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Figure 1.4: Different processes that could affect the distribution of red giants around the SMBH.
Withing 0.1 mpc, the gravitational forces are enough for tidal stripping to occur. Further away, jet
ablation and collisions with stellar mass black holes become more relavant. Beyond 0.04pc the
main processes become collisions with main sequence stars and interactions with the stellar disc.
Despite covering the whole central parsec in this way, theese current known mechanisms don’t add
up to the total observed count of missing stars. Image adapted from Zajaček et al. (2020b).

1.4 Why Photoevaporation?

As Zajaček et al. point out, it is likely that all these processes partially contribute to the observed
result. However, the current known processes fail to provide a comprehensive picture. In this
vein, it is sensible to look for other processes that could contribute at other distance scales from
the central black hole. Our proposal is that radiation from an accreting Sgr A* could deposit
energy in the outer layers of these stars and heat them above escape temperature, leading to a
loss of mass in the forms of a stellar wind. This photoevaporative process could strip the stars
of their outer layers, drastically reducing their luminosity or altering their evolutionary course
significantly. Unlike jets, radiation from the accretion disc is continued during the activity
of the supermassive black hole, and isotropic in the plane of the galaxy, as such, it can be
responsible for the lack of a larger number of stars.

Although Sgr A* is currently relatively quiescent, accreting only at 10−9−10−10 of its Eddington
luminosity (Serabyn et al., 1997), there is mounting evidence that it experienced periods of
increased activity in the past. Our biggest hint are the Fermi Bubbles: large-scale, gamma-ray-
emitting structures extending roughly 25,000 light-years above and below the galactic plane
(Su et al., 2010). These bubbles are thought to be the result of a past outburst from Sgr A*
that released vast amounts of energy, driving gas and cosmic rays far away from the galactic
centre (Zubovas et al., 2011). The age of the Fermi bubbles is estimated to be a few million
years (Cheng et al., 2011; Guo & Mathews, 2012), suggesting that the outburst from Sgr A*
occurred relatively recently in the galaxy’s history.

If an event destroyed the cusp or partially stripped the stars there would not be enough time
for the cusp to reform or become visible again, as the relaxation time is of the order of 1 Gyr
(Zajaček et al., 2020b). Stripping could remove only the less dense atmosphere of the stars,
reducing their mass by little but changing their evolutionary course considerably. With enough
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Chapter 1. Introduction 1.5. OVERVIEW

atmosphere lost, the remnant can turn into a white dwarf, much less luminous and harder to
observe (Deinzer & von Sengbusch, 1970). However, it is unlikely that this remnant will be
disrupted by gravitational interactions and disappear completely (Lu et al., 2008).

Photoevaporative loss is known to happen to the discs of material around newly formed stars
(Adams et al., 2004). Here, radiation from the star contributes to the dispersal of the disc by
heating the surrounding material (Owen et al., 2012), or external radiation sources affect the
disc by shaping it into a peculiar almond-like form (Johnstone et al., 1998). Photoevaporation
also affects planets (Owen & Alvarez, 2016; Owen et al., 2012; Murray-Clay et al., 2009),
usually large jupyter-like planets close to their star, and can change their evolutionary course
considerably (Bear & Soker, 2011). It is a suspicious coincidence that, in the case of higher
accretion rate from Sgr A*, Red Giants would be just the right type of star to experience this
process, as their large size and low density result in a low escape temperature.

1.5 Overview

We conducted our investigation by constructing a photoevaporation model based on the
recombination-limited regime described by Owen & Alvarez (2016). This choice is motivated
by the large radius and low density of red giant stars, and is substantiated by the results of our
calculations.

Our initial calculation involved verifying that the black hole’s spectrum can drive photoevap-
oration in this regime. We required the radiation to ionise hydrogen and expected it to be
within the extreme ultraviolet (EUV) range. This calculation also allowed us to determine the
spectrum of the black hole accretion disc, which was necessary to calculate the properties of
the mass loss flow.

Our primary calculation focused on evaluating the properties of mass loss by considering
ionisation-recombination balance to find the position of the flow’s base. Assessing mass loss is
crucial because it allows us to gauge the star’s immediate response to the radiation. However,
it does not allow us to draw definitive conclusions about the process’s relevance to the star’s
evolution. To understand how the star will respond to mass loss, our final calculation involved
constructing a simple stellar model to estimate the adjustment of the star’s radius after mass
loss.

This thesis will proceed as follows: The Model and Theory section will provide a detailed
outline of our model, the theoretical aspects of the relevant physical processes, and the
assumptions made about the supermassive black hole, the stellar wind, and the stellar evolution.
Subsequently, the Calculations section will detail the methods used for the calculations within
our model, including the black hole spectrum, mass loss rate calculation, and stellar evolution
adjustment. In the Discussion and Results section, we will examine the primary findings, the
implications of our results for the missing giant stars problem, the limitations of our model,
and potential extensions, such as the applicability of our findings to other galaxies and other
star types. Finally, the Conclusion will summarise the major points of the thesis, highlighting
the significance of photoevaporation in the evolution of red giant stars and the future work
needed to establish testable predictions.
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2 Model and Theory

Figure 2.1: A graphic representation of our model. On the left, we have the SMBH and its
accretion disk, emitting radiation. As the radiation reaches the star and the hydrogen number
density increases, ionisation and recombination become relevant, dictating the morphology of
the region. Here, the heated hydrogen gas is leaving the star in a flow which starts from a thin
’ionisation front’, where the ionisation fraction rapidly decays. Beyond this, the gas is not moving
and in hydrostatic equilibrium. Proceeding closer, we hit the star’s surface, where the material
becomes optically thick.

In this chapter, we aim to elucidate the theoretical framework and assumptions underpinning
our calculations. Our model, as depicted in the image above, is divided into three main
sections, separated both physically, as they correspond to different physical regions of the
model, and conceptually, as they concern different physical phenomena and different basic
assumptions.

We will proceed from left to right, beginning with the supermassive black hole (SMBH) at the
galactic centre. We will explore the physics of accretion and its role in generating radiation,
culminating with an estimation of the disc’s emission spectrum.

Next, we will examine the region outside the star, where the radiation ionises hydrogen and
deposits energy until it traverses one full optical length, at which point the material becomes
optically thick to radiation. Beyond this region, radiation does not directly influence the
material. Consequently, this point, which we call the ionisation front, marks a sharp drop in
ionisation fraction all the way to zero and can also be regarded as the base of the flow. It is
the main feature of the flow morphology, and identifying its position is necessary to calculate
the mass loss rate.

Lastly, we will examine the star itself, a system delicately balanced in gravitational equilibrium
that dynamically adapts to changes in its surroundings. This region is vital for comprehending
the star’s response to photoevaporation and its subsequent evolution.

8



Chapter 2. Model and Theory 2.1. ACCRETION THEORY

2.1 Accretion Theory

Accretion is the process through which black holes and other objects accumulate mass from
their surroundings, typically from a gaseous disc known as an accretion disc.

For the purpose of our calculations, we adopted the thin accretion disc model, also called the
Shakura-Sunyaev model (Shakura & Sunyaev, 1973). This model assumes that the disc is
geometrically thin, optically thick, and in a state of Keplerian rotation, where the gas in the
disc orbits the black hole at nearly the same speed as it would when only in the presence of its
gravitational field. The disc’s viscosity, which is attributed to turbulence, causes the gas to lose
angular momentum and gradually spiral inward, allowing the material to accrete onto the
black hole. As the gas spirals inwards, gravitational energy is lost through viscous interactions,
and as the gas heats up it is released in the form of radiation, predominantly in the X-ray and
ultraviolet bands.

As the gas falls closer, it will eventually reach the last stable orbit at roughly three times the
Schwarzschild radius of the black hole (Choudhuri, 2010). This sets an inner boundary for
the accretion disc, beyond which the material will plunge directly into the black hole. This
innermost stable orbit (ISO) is crucial in determining the properties of the accretion disc and
the energy released through the accretion process.

The radiation from the accreting gas can be associated with an effective temperature, allowing
us to define a temperature profile throughout the disc, in which the material falling closer
gets hotter and hotter. This effective temperature profile can be found by considering the
gravitational energy lost as the material falls closer to the black hole. This energy loss results
in a temperature gradient within the accretion disc, which helps us understand the disc’s
radiation output (Juhan Frank, 2002).

Teff(R) = Ts
4
√

(R−3 −R− 7
2 ) (2.1)

where

Ts =
4

√
GMṀ

8πσR2
ISO

(2.2)

is the maximum temperature of the disc.

2.1.1 Eddington Limit

When a black hole or a star accretes matter, the accreting material heats up and emits radiation.
As the luminosity of the object increases, the radiation pressure pushing the material outward
also increases. At the Eddington limit, the radiation pressure becomes strong enough to
counteract the gravitational force pulling the material inward. Consequently, the accretion
process becomes self-limiting, as any further increase in the luminosity would cause the
accreting material to be blown away.

9



2.1. ACCRETION THEORY Chapter 2. Model and Theory

Figure 2.2: The temperature profile as a function of the dimensionless radial distance R/RISO The
temperature starts low far away from the SMBH, rising as it gets closer to peak at Ts very close to
the innermost stable orbit, then rapidly drops to zero at RISO.

Mathematically, the Eddington luminosity LEdd of an object of mass M can be expressed as:

LEdd =
4πGMcmH

σT
(2.3)

where G is the gravitational constant, c is the speed of light, mp the proton mass and σt is
the Thompson scattering cross section (George B. Rybicki, 1985). The Eddington luminosity
is proportional to the mass of the object, meaning that more massive objects have higher
Eddington limits. In the context of accreting black holes, the Eddington limit plays an important
role in determining the maximum accretion rate and luminosity that a black hole can achieve.

From this, we can find the maximum accretion rate of the SMBH. The total luminosity of the
disc is dependent on the accretion rate Ṁ (Pringle, 1981):

L =
1

2

GMṀ

RISO
(2.4)

Equating 2.3 and 2.4 and solving for Ṁ :

ṀEdd =
8πRISOmpc

σT
(2.5)

2.1.2 Accretion Disc Spectrum

The effective temperature profile allows us to determine the spectrum of radiation emitted
by the accretion disc. Assuming that the disc emits as a black body, the ring elements of area
2πRdR at radius R will all have a specific luminosity given by the Planck spectrum:

Bν(T ) =
2hν3

c2
1

exp hν
kBT

− 1
(2.6)
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Chapter 2. Model and Theory 2.2. THE STELLAR WIND

where T is a function of R. This allows to set up an integral for the spectrum of the whole disc
by integrating over concentric rings from the innermost stable orbit to the outer radius of the
disc:

Lν =

∫ Rout

RISO

2π2RBν(T (R)) dR = 2π2R2
ISO

∫ rout

1

r Bν(T (r)) dr (2.7)

where we used the dimensionless variable r = R/RISO and one factor of π comes from
integrating over the solid angle.

This integral can be solved analytically in two limits. First for low frequencies where hν ≪ kbTs:

Lν = 2π2R2
ISO

hν2

kb

∫ rout

1

r T (r) dr ∝ ν2 (2.8)

as the integral is independent of ν.

Alternatively, we can substitute a = hν
kBT

, which is a function of T and so of R. In this form:

Lν ∝ ν
1
3

∫ aout

ain

a
5
3

ea − 1
da (2.9)

Unlike above, here the integration limits are dependent on ν, but as long as kBTout > hν >
kBTISO:

ain =
hν

kBTISO
≪ 1 (2.10)

aout =
hν

kBTout
≫ 1 (2.11)

and the integral is roughly constant and we get Lν ∝ ν
1
3 .

From these two solutions, the expected functional shape of the spectrum can be easily guessed,
as it will first rise following a ν2 dependence up until the peak contribution of the outer region
of the disc, then flatten with a ν

1
3 dependence, then decay rapidly as hν ≫ kbTout and the

contributions to the spectrum from the highest temperature rings die off. A full solution
however requires a numerical calculation, which we detail in the next chapter.

2.2 The Stellar Wind

2.2.1 Hydrostatic Region

This part of our model is characterised by two distinct region: a radiation-driven stellar wind
and a still stellar atmosphere in hydrostatic equilibrium, which the radiation doesn’t reach.
We consider both regions to be isothermal, although at different temperatures.
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2.2. THE STELLAR WIND Chapter 2. Model and Theory

For the stellar wind region, we assume a temperature of 104K . This choice is motivated by
the nature of the main physical processes shaping the region: ionisation and recombination.
104K is the temperature of the hot interstellar medium (Dalgarno & McCray, 1972), and

As we will find in our calculations, the ionisation fraction has an almost constant value of 1 up
until the ionisation front, so it is reasonable to take a value of µ = 0.5g/mol .

For the region outside the star instead, we chose a sample temperature of 3.5× 103K. This is
by no means the only possible temperature, but it is a temperature in a reasonable range for a
red giant, and sets the order of magnitude for the calculation. What we are expecting of our
calculations is not a high precision result, but more of a qualitative estimate of the behaviour
of stars under a photoevaporative process. This region is not ionised, so µ = 1g/mol.

2.2.2 Parker Winds

As radiation deposits energy into the gas, it will become gravitationally unbound and leave
the star. In our model, we assume it does so as a Parker wind, as this requires very minimal
assumptions:

i The gas is moving radially outwards

ii The gas is in the presence of a gravitational field

iii The wind has reached a steady state and is time-independent

The only nontrivial assumption is the third, which is satisfied as long as the star and incoming
radiation don’t undergo rapid changes. This allows to write a momentum equation, with
terms coming from the gravitational pressure and from the movement of the gas (Lamers &
Cassinelli, 1999).

Because of mass conservation, the rate at which gas flows outwards constrains the density and
velocity profile:

Ṁ = 4πR2v(R)ρ(R) (2.12)

From Newton’s second law:

dv

dt
=

∂v

∂t
+

∂v

∂R

∂R

∂t
= v(R)

∂v

∂R
(2.13)

v
dv

dR
+

1

ρ

dP

dR
+

GM∗

R2
= 0 (2.14)

Under the assumption of a time-independent velocity profile. If the gas is ideal:

P = a2ρ (2.15)

Where a =
√

RT
µ

is the speed of sound. Which allows to rewrite the pressure gradient term as:
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1

ρ

dP

dR
=

a2

ρ

dρ

dR
(2.16)

The term 1
ρ
dρ
dR

can be rewritten using mass conservation:

1

ρ

dρ

dR
= − 2

R
− 1

v

dv

dR
(2.17)

Plugging in, the momentum equation becomes

v
dv

dR
+ a2

{
− 1

v

dv

dR
− 2

R

}
+

GM∗

R2
= 0 (2.18)

We note that the first two terms can be rewritten as 1
2
d(v2)
dR

and −d log v
dR

. Integrating and fixing
the constant by requiring We can solve for the mach number using the Lambert W function,
defined as the inverse of f(x) = xex. The function has two branches and the correct one has
to be chosen to obtain the correct physical solution.

Where the critical radius Rc is:

Rc =
GM∗

2a2
(2.19)

M(R) =

√
−Wk

[
−R4

c

R4
e3−4Rc

R

]
(2.20)

Here, k = 0 for R < Rc and k = −1 for R > Rc.

As the argument of Wk is negative, we need to ensure we choose the correct branch of the W
function to have a smooth increasing solution. For R < Rc, we use the main branch W0, while
for R > Rc, we use the W−1 branch. This choice ensures that the solution is consistent with
mass conservation, as it will be ascending for R > Rc.

2.3 Density Profiles

In the region behind the ionisation front, the gas will have a zero rms velocity, and we will
assume it to be still and in hydrostatic equilibrium. Under these conditions, the momentum
equation is simpler:

1

ρ

dP

dR
+

GM∗

R2
= 0 (2.21)

And it can be solved to give the hydrostatic density profile.

ρ(R) = ρse
2Rc

R
−2Rc

Rs (2.22)
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Figure 2.3: The mach number of a Parker wind, as a function of the dimensionless radial distance
R/Rc. The red vertical line marks the critical radius, which in the steady parker wind coincides
with the sonic point, the point at which the flow velocity rises above the sound speed.

with

Rc =
GM∗µ

2RT
=

GM∗

2cs
2

(2.23)

G gravitational constant, M∗ Mass of the star, R ideal gas constant, T Temperature (constant),
rc Parker wind critical radius, Rs radius of the star (at the photosphere), and cs is the speed of
sound.

For the Parker wind region instead, the density profile is given from mass conservation and the
Parker wind velocity. Since the total mass flowing outwards has to be the same at all distances:

Ṁ = 4πR2ρ(R)v(R) (2.24)

Which allows to find the density profile by solving for ρ:

2.3.1 Density Profile from Steady Parker Wind

Using mass conservation Ṁ = 4πR2ρ(R)v(R)

obtain R2ρ(R)v(R) = R2
cρ(Rc)v(Rc)

recall v(Rc) = cs so:

ρ(R) =
R2

c

R2

ρ(Rc)

M(R)
(2.25)

If the density at some other radius, say the ionisation front RIF, is known, then:

14
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ρ(RI) =
R2

c

R2
IF

ρ(Rc)

M(RIF)
(2.26)

so we can rewrite:

ρ(R) =
R2

IF

r2
M(RIF)

M(R)
ρ(RIF) (2.27)

2.3.2 Density at Photosphere

The knowledge that the region outside the star is hydrostatic and the value of the density at a
single radial distance are sufficient to find the full density profile of the region. We assume the
radius of a star is defined as the radius at which the star becomes opaque. We can find the
density at the surface by demanding that the optical depth is of order unity at the depth of
one hydrostatic scale height.

ρsκH = 1 (2.28)

Where κ is opacity in cm2/g and H is scale height:

H =
RT

µ

R2

GM∗
(2.29)

2.3.3 Momentum Balance at the Interface

In our approximation of a point-like ionisation front, we have a discontinuous interface
between the two regions, the Parker wind region and the hydrostatic region. In these regions,
the gas has very different states. On one side, the gas is moving, while on the other it is not.
Although we assume both to be isothermal, we also assumed very different temperatures for
the two regions. There is no reason then for the gas on the two sides of the interface to have
the same pressure or density. To be consistent with our steady state assumption, we have to
impose a momentum balance condition, so that the force on one side of the interface balances
out the force on the other side.

Because of momentum conservation, we can relate the pressure and velocity on both sides of
the interface:

ρpv
2 + Pp = Ph (2.30)

Where Pp and Ph are the pressures in the Parker wind and hydrostatic region respectively.
Since the gas is ideal, we can substitute Equation 2.42 on both sides, then solve to get:

ρp = (1 +M2(RIF))
−1Th

Tp
ρh (2.31)
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2.4 Ionisation and Recombination

The position of the base of the flow depends on how deep the radiation can penetrate these
outer layers. For stars such as red giants, this is controlled by ionisation and recombination in
the stellar wind region.

We assume that the radiation from the SMBH will be able to ionise hydrogen, and that
metallicity will be low enough to be irrelevant. The ionisation rate is nHΓ, with:

Γ =

∫ ∞

13.6eV

Lνe
−τν

hν

σν

4πd2
dν (2.32)

Where σν is the photoionisation cross-section, nH Hydrogen number density, τν =
∫
nH1σνdr is

the optical depth, d distance from radiation source and Lν

hν
is the photon flux per frequency in

the interval [ν, ν + dν]. The integral starts from 13.6 eV, the energy of the hydrogen ground
state, as this is the lowest energy an ionising photon can have.

The recombination rate instead is nenpαB where nH, ne, np are the Hydrogen, electron and
proton number densities and α is the recombination coefficient. Assuming the recombination
time is faster than the flow timescale, the gas can be considered to be in local equilibrium,
and the amount of ionised gas is controlled by the balance of ionisation and recombination.

nHΓ = nenpαB (2.33)

It is convenient to define the ionisation fraction X = ne
nH

, which allows to write the number
density of non-ionised hydrogen as nHI = (1−X)nH.

We note that non-ionised hydrogen contributes to the ionisation rate, while the proton
and electrons contribute to the recombination rate. Then ionisation-recombination balance
becomes:

(1−X)nHΓ = X2n2
HαB (2.34)

with the assumption that the gas is neutrally charged (np = ne = nHX). At fixed distance from
a star Γ, nH and αB are constant and we can solve for X:

X =
−Γ±

√
Γ2 + 4nHαBΓ

2nHαB
(2.35)

Where only the positive solution is physical.

From this result, some initial considerations can be made: throughout the region, we expect
the ionisation fraction to drop as the optical depth τν increases, resulting in a lower Γ. As we
will see later, this change is rather abrupt, creating a thin region in which the ionisation fraction
rapidly drops to zero. This region is what we call ionisation front. It is not a point-like region,
but its extension in this situation is small enough that for all purposes it can be considered
a single point. Our calculations will mainly revolve in figuring out the radial position of the
ionisation front, as this is what we will consider as the base of the flow.
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2.5 Mass Loss Rate Estimate

If we’re willing to make some crude assumptions, we can get an analytical estimate of the
mass loss rate (Owen & Alvarez, 2016). First, we estimate the density at the flow base nb

by imposing that all the radiation from the incoming flux is absorbed over one scale height
(which for a Parker wind is set by Rc):

F =

∫ ∞

Rs

αBXn2
H dR ≈ αBn

2
bRc (2.36)

which gives:

nb =

√
F

αbRc
(2.37)

by assuming the base of the flow is at the star’s radius, we have all the information required to
find the mass loss rate from Equation 2.12:

Ṁ = 4πR2
s csM(Rs)mHnb (2.38)

2.6 The Star

Red giant stars are an important phase in the life cycle of low to intermediate-mass stars
(0.3 to 8M⊙) and constitute a significant fraction of the stellar population in the Universe.
These stars are characterized by their large radii (0.5 to 2AU) and their relatively cool surface
temperatures, typically between 3, 000 and 4, 000K (Schwarzschild & Härm, 1958). This
combination of size and temperature gives them their distinct red appearance and the name
”red giant.”

The evolution of a star into a red giant begins when its core hydrogen supply has been
exhausted, and the star can no longer maintain nuclear fusion through the proton-proton
chain. Consequently, the core contracts and heats up, triggering hydrogen shell burning around
the inert helium core (Iben, 1965). This process increases the star’s luminosity, causing the
outer layers to expand and cool, giving rise to the typical red giant characteristics (Kippenhahn
& Weigert, 1990).

Red giant stars can be further classified into two distinct groups: red giant branch (RGB) stars
and asymptotic giant branch (AGB) stars. While both types of red giants undergo similar
processes, the primary difference lies in the stage of nuclear burning occurring in the core.
In RGB stars, the core is primarily composed of inert helium, and nuclear fusion is limited
to hydrogen shell burning around the core. On the other hand, AGB stars have already
experienced a helium flash, igniting helium burning in the core and resulting in the production
of carbon and oxygen. This advanced stage of core burning in AGB stars leads to a more
complex structure, with both hydrogen and helium shell burning surrounding the core Iben &
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Renzini (1983). In our model, we will focus on RGB stars, as their simpler internal structure is
more suited for our analysis.

2.6.1 The Core

Degenerate compact objects, such as the cores of red giant stars, have a unique relationship
between their mass and radius due to the degenerate nature of the matter within them. In
these objects, the pressure supporting them against gravitational collapse is primarily provided
by the degenerate electrons, which obey the Pauli exclusion principle (Chandrasekhar, 1931).

For degenerate objects, the mass-radius relationship can be expressed as:

R ∝ M−1/3

This relationship indicates that as the mass of a degenerate object increases, its radius decreases.
This is contrary to what one would expect for non-degenerate objects, where an increase in
mass generally leads to an increase in size. The negative correlation between mass and radius
in degenerate objects is a result of the increased degeneracy pressure provided by the electrons
as the object becomes more compact.

2.6.2 Stellar Model

Since our calculations provide the mass loss rate of the star, our stellar model will be necessary
to find how the star evolves under mass loss from its outer layers. We would like to be able
to know how the star’s radius adjusts after losing a certain amount of mass. During this
process we assume that the star adjusts adiabatically, as the mass loss happens on timescales
much longer than the one set by the speed of sound and radius of the star. By assuming
that the core doesn’t change, i.e. the process is taking place on timescales shorter than the
star’s evolutionary timescale, we can use the core mass as a constant of our model. Then,
the physical processes governing the stellar structure and the future mass of the star will be
restrictive enough to determine the future radius.

The temperature at the surface of the core is dictated by the hydrogen burning temperature
for the p-p cycle, which is about 4× 107K.

We assume that the hydrostatic region is adiabatic as it is governed by convection. Convection
occurs when the temperature gradient in a fluid becomes steeper than the adiabatic gradient,
which leads to an efficient transport of heat through the fluid. In this case, the temperature
gradient remains close to adiabatic because convection rapidly redistributes heat, preventing
significant deviations from the adiabatic gradient (Kippenhahn & Weigert, 1990).

The gas is adiabatic

P = Kργ (2.39)

and hydrostatic
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Adiabatic
Envelope

Convection

Hydrogen
Burning Shell

Degenerate
Helium
Core

Convection

Figure 2.4: A schematic of our model. Following the structure of a RGB red giant, our model
assumes a helium core supported by degeneracy pressure, surrounded by a shell of burning
hydrogen, which is then surrounded by an envelope of hydrogen gas. Here, convective motion
keeps the gas adiabatic.

dP

dR
= −Gm

R2
ρ (2.40)

where m is the mass contained in the volume of the star of radius < R.

Differentiating 2.39 and substituting 2.40 we obtain an equation for the density gradient:

dρ

dR
= − 1

Kγ

Gm

R2
ρ2−γ (2.41)

To find the temperature gradient, we differentiate the ideal gas law:

P =
RT

µ
ρ (2.42)

dT

dR
=

µ

R

{
1

ρ

dP

dR
− P

ρ2
dρ

dR

}
(2.43)

substituting 2.40 and 2.41, and noticing that ρ−γP = K, we obtain:
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dT

dR
=

1− γ

γ

µ

R
Gm

R2
(2.44)
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3 Calculations

3.1 Accretion Disc Spectrum

To numerically evaluate the spectrum of the accretion disc, we used the trapezoid integration
routine from the scipy.integrate Python module. For each value of the frequency ν, we
numerically integrated the integrand in equation 2.7 , using 300 logarithmically spaced bins.
As integration variable we used the dimensionless radius r = R

RISO
. We used an integration

range starting from 1 + 10−5 (to avoid numerical rounding errors) all the way to the value of
104. Values further out bring virtually no contribution to the integral as the temperature is too
low.

It is also important to note that the integral has two physical cutoffs. One is the distance at
which the temperature of the disc reaches the temperature of the surrounding interstellar
medium. The other is of the distance at which the ring simply ceases to be. We found that
choosing values beyond 104 did not significantly impact our result.

In the frequency range, we limit our calculation to the range (10−5, 105). The frequency range
we are truly interested is the EUV, which includes radiation from 13.6eV to a couple thousands
of eV, as this is radiation capable of ionising hydrogen and depositing sufficient energy in the
star’s surroundings. However, we choose a larger range for testing purposes.

3.2 Ionisation Front Position

To fulfil our aim of calculating the photoevaporative mass loss rate, we want to be able to find
the density and velocity at a known position. An obvious candidate for such position is the
base of the flow, which in our model is located at the ionisation front. Hence, we want to be
able, given the incoming flux, the mass and radius of the star, to find where the ionisation
front is located. This is the aim of this calculation.

There are several variables affecting the black hole flux and spectrum, but we wish to evaluate
out model on a grid over some parameter space, and having multiple parameters for a single
physical aspect of the calculation is inconvenient. For this reason, we chose to vary only the
accretion rate of the SMBH, expressed in fractions of the Eddington rate. While this doesn’t
seem to encompass all the possible spectra, which will also depend on black hole mass (fixed
if we only consider Sgr A*) and on the distance from the SMBH, we see that the radiation flux
only appears in the calculation of Γ, where it is divided by d2. Since the number of ionising
photons is directly proportional to the accretion rate, the value Lν/d

2 can be controlled by
a single parameter. Thus our parameter space will be three dimensional, composed of the
star’s radius at the photosphere Rs, the star’s mass M∗ and the accretion rate of the SMBH,
expressed as a dimensionless fraction of the Eddington rate ṁ = Ṁ

ṀEdd
. The distance will be

fixed at a value of d = 0.05pc
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Density gap found imposing
momentum balance
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Figure 3.1: A schematic representing our calculation of the ionisation front position. We start
by guessing the position, then calculate the density profile in the hydrostatic region and find the
density in the Parker wind region by imposing momentum balance at the interface. From here, we
can calculate the ionisation front position and compare it to our guess.

To find the position of the ionisation front, we apply the shooting method: we first guess its
position, calculate the density profile based on this guess and use it to integrate inwards and
determine where the ionisation fraction falls to 0. However, this position will not coincide
with our guess. To fix this boundary condition we defined a function that takes our guess as
an input and calculates how far the calculated IF falls from the guess. Then, we solve for a
zero of this function using the scipy.optimize.brentq solver.

We work in dimensionless radial units r = R/Rc, to avoid dealing with large numerical values
and carrying around the units, while also allowing to scale the algorithm depending on the
position of the critical radius. Starting from our guess, we choose a position far enough from
the star that the optical depth already traversed by the radiation is negligible. Then, we
numerically integrate inwards finding the value of X and Γ at each step. We proceed this way
until, ideally, X = 0. However, as the numerical value will never be exactly 0, we chose an
arbitrarily low value of X < 10−4, which was deemed acceptable as choosing a lower one
wouldn’t affect the result. We then calculate the difference between the guessed position of rIF

and the result.

Here is a break down of the steps we followed. The radial steps are spaced logarithmically
starting from r0 = 10, so they get smaller the closer to the star.

i. Divide radially into log-spaced bins [r0, ..., ri, ...rn]

ii. Initialise with X0 = 1, τ 0ν = 0

iii. Evaluate Γ0

iv. Determine X1 by applying ionisation-recombination balance
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v. Calculate τ i+1
ν = τ iν + nHσν0(1−X i)(ri+1 − ri), Γi+1 =

∫∞
13.6

Lνe−τi+1
ν

hν
σν

4πr2
dν

vi. Find Ai+1 = nHαB
Γi+1 , X i+1 = −1+

√
1+4Ai+1

2Ai+1

vii. Repeat until Xn

To calculate X we require to know the hydrogen number density nH. We fond this by calculating
the density profile ρ(r) and dividing by the mass of the hydrogen atom. As we said in Section
2.3.1, the density profile is discontinuous at rIF, which is where our guessed position comes
into play. Our guess allows us to find the hydrostatic density profile at rIF and apply momentum
balance as in 2.31 to find the density on the other side of the interface. This gives a boundary
condition for the Parker wind profile in 2.27, which describes the density for r > rIF.

3.3 Mass Loss Rates

The mass loss rate can be found from 2.12 by assuming the position of the ionisation front is
at the base of the flow:

Ṁ = 4πR2
IFcsM(RIF)ρ(RIF) (3.1)

We compare our mass loss rates with the analytical solution from Owen & Alvarez (2016). We
expect the analytical estimate to under estimate the real mass loss rate, as it assumes the base
of the flow is at the star’s surface. We find that our calculation gives a value a factor of 20
larger than the analytical estimate. This number is at first glance worrying, but splitting up
the product into separate terms, we see this factor emerging as a composition of the growth of
the different terms in the product:

Term Analytical Estimate Numerical Calculation Ratio

R2
IF 0.190AU2 0.216AU2 1.137

M(RIF) 4.71× 10−9 2.02× 10−8 4.289

ρ(RIF) 1.24× 10−14g/cm3 4.70× 10−14g/cm3 3.790

Ṁ 6.39× 10−16M⊙/yr 1.18× 10−15M⊙/yr 18.46

Table 3.1: Comparison between the analytical solution from Owen & Alvarez (2016) and our
numerical calculation, for a star of mass Ms = 2.11M⊙ and radius Rs = 0.436AU, under radiation
from a SMBH accreting at 1/10 of the Eddington accretion rate. The third column has the ratio of
our numerical result to the analytical estimate.

This decomposition makes the large numerical difference much more understandable. The
mach number and the density are the two values that contribute more to this difference, as the
mach number is quite sensitive to the position of the ionisation front. In this light, a difference
of a factor of 4 is acceptable.
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3.3.1 Mass Loss Rate Interpolator

We ran our calculations over a grid in parameter space. To avoid unnecessary calculations, we
restricted the grid by selecting masses and radii for which the escape velocity at the surface
was lower than a certain value, which we determined by choosing a set of values that gave a
very low mass loss rate. This also allows to have a variable grid precision which scales with
the width of the explorable range.

Once we obtain the solutions over the parameter space, we interpolate them to obtain a
function that can be used to rapidly obtain the mass loss rate for any point in parameter space.

3.4 Stellar Evolution

The aim of this calculation was to be able to give a qualitative statement on the evolution of
the star under photo evaporative mass loss. As we decided to simulate evolution with Euler
integration, we needed a model that could tell us how the star adjusted to a small mass loss at
each time step.

To numerically solve the stellar model described in Section 2.6.2, we need equations 2.44 and
2.41, together with a third equation describing the change in the enclosed mass:

dm

dR
= 4πR2ρ(R) (3.2)

these have with boundary conditions at the surface R = Rs and at the core R = Ro

We match the mass of the star:
m(Rs) = M∗ (3.3)

The core temperature and mass
T (Ro) = 4× 107K (3.4)

m(Ro) = Mo (3.5)

At the surface, we set an arbitrarily low density, chosen so that any lower value wouldn’t
change the output of our model:

ρ(Rs) = ρs (3.6)

We note that the density used in this model is completely unrelated to the surface density we
used for the previous section. The physics of this model knows nothing about the opacity of
the star and constraining it in that way would be too restrictive for this simple model. We
assume the star to be mostly supported by radiation pressure and choose γ ∼ 4

3
, minus a small

numerical quantity of 10−12 as pure radiation pressure is unphysical.
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We want our model to find a star’s radius, given it’s mass and the mass of the core. We have to
use the shooting method twice to fix two boundary conditions: the temperature at the core,
and the enclosed mass at the core. The values we have to guess are the the star’s radius and
the temperature at the surface, which well also be the outputs of our model. We achieve this
with two nested shooting methods: With a guess for the radius, we solve the problem to find
the star’s surface temperature by shooting inwards and integrating the model equations to
find the temperature at the core. We evaluate the difference from the expected value (4× 107)
and solve for this to be 0 using the brentq solver, giving us a value of the surface temperature.
Once this is done, we can calculate the enclosed mass at the core, evaluate the discrepancy
from the expected one and solve again for the values that gives 0 error.

This model will output an interpolator that allows to find the star’s radius for any (solvable)
core mass and star mass combination.

Using a 2d root finder would require the input of a region we are certain contains the solution,
which is hard to find a priori for different parameters. Instead, we nest the two problems. To
find the range containing the second solution, we had to first manually evaluate our solver in
a grid. This way, we determined the region in which the problem has a solution, then split
it with bins of variable size to evaluate the star radii for all stars in parameter space. We
interpolated these results to get a function that fit our needs.

We will keep the core mass constant during the star’s evolution. This is a reasonable assumption
as long as the star doesn’t deviate considerably from its evolutionary course.

Once coupled with our mass loss rates, we can run a simple Euler integration to obtain the
trajectory of the star in our parameter space.
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4 Results and Discussion

In this section, we will recap the main findings of our investigation, discuss the implications
of our results, address some limitations of our model, and explore potential applications of
our findings to other galaxies and star types. Our investigation aimed to study the effect of
photoevaporation on red giant stars in the vicinity of the supermassive black hole Sgr A*. We
constructed a photoevaporation model based on the recombination-limited regime and carried
out calculations to determine the black hole spectrum, mass loss rates, and the adjustments in
stellar evolution due to mass loss.

4.1 The Black Hole Spectrum

Figure 4.1 shows the spectrum we obtained by numerical integration. This result confirms
our expectations and allows us to proceed with the next calculation. The functional form of
the calculated spectrum follows closely the one we expected from analytical estimates, and a
large fraction of the radiation will be composed of ionising photons.

Figure 4.1: The calculated accretion disc spectrum of Sgr A*. The axes are in logarithmic scale.
On the x axis we have the photon energy hν, while on the y axis we have the specific luminosity.
The shaded area is the power in the EUV, of ionising photons. The red and orange straight lines
are the approximate power law dependences derived in Chapter 2, shifted by an arbitrary amount
for ease of visualisation.

4.2 Mass Loss Rate Results

The parameter space for this calculation was three dimensional, including the star mass Ms,
the star radius Rs and the dimensionless accretion rate fraction ṁ. We decided to plot the
mass loss rates over the Ms ×Rs space, at three different values of ṁ: [0.1, 0.3, 1.0]

26



Chapter 4. Results and Discussion 4.2. MASS LOSS RATE RESULTS

Figure 4.2: The mass loss rate scaling with ṁ, the fraction of the Eddington accretion rate, for a
star of 1M⊙ and radius 0.5AU. In red our calculated values, while in yellow is a ṁ

1
2 power law. As

expected, our mass loss rates scale as the square root of the flux.

Figure 4.3: The mass loss rates for ṁ = 0.3 as a function of star radius in astronomical units and
mass in solar masses. The colors represent the logarithm of the mass loss rate in M⊙/yr We see that
the mass loss rates span many orders of magnitude over parameter space. The white line marks
the evaporation timescale contour of 3Myr. Stars above the line take less than 3Myr to evaporate,
while stars below take longer. The region marked as ”no evaporation” corresponds to the section of
parameter space we excluded a priori for having a large escape velocity. In the empty region in the
top left corner our model failed to provide a solution, as it corresponds with a largely unphysical
situation.

For better analysis, we want to convert the mass loss rates to an ”evaporation timescale”, that
could tell us how fast the star is evaporating. If we assume constant rate, we can find this by
dividing the star mass by its mass loss rate. The last activity from Sgr A* was around 10Myr,
and the relaxation time of the red giant cusp is estimated at around 107 years. Which is why
we chose 3Myr as a good timescale in which we expect stars to be significantly affected for
them to go missing. As we can see from the plots, a significant fraction of the parameter space
is affected, even at low accretion rate.

Our findings indicate that stars can indeed evaporate under the influence of radiation from

27



4.3. STELLAR EVOLUTION RESULTS Chapter 4. Results and Discussion

Figure 4.6: The mass loss rates for ṁ = 0.1 (a) and ṁ = 1.0 (b). We see that, as the mass loss rate
scales as the square root of the flux, a large reduction in the black hole flux has only a moderate
effect on the section of our parameter space that undergoes photoevaporation.

the supermassive black hole. The evaporation timescale is found to be dependent on the mass
and radius of the stars, as illustrated in the plot. As expected, lighter and less dense stars are
more susceptible to evaporation.

An issue that warrants further investigation is how a real red giant population is distributed in
the parameter space.

A second issue with this calculation is that we do not know how a star will move in the
parameter space as it loses mass. This was our reason to proceed with the next result.

4.3 Stellar Evolution Results

Figure 4.7 shows the result for our stellar evolution calculation. We let 3 different stars of the
same mass but different radii evolve over the span of 3Myr.

When the stars reach a low mass, their radius seems to blow up. However at this stage other
physical processes not accounted for in our model would become relevant, and the assumption
of constant core mass will not hold anymore. Moreover, the non-smooth trajectory observed
in the stellar evolution results can be attributed to the numerical solving method employed in
certain steps, followed by interpolation. The angular jumps seen in the trajectory reflect the
fact that these curves are interpolated over the grid we used to solve the problem, and could
be made smoother with the use of a finer grid.

It is important to note that this model is very simple and approximate. It is only solvable in a
range of core masses [0.38, 0.42], which is incompatible with known sizes for red giant cores.
However, its usefulness lies in the qualitative prediction it allows us to make.

Despite these limitations, our stellar evolution calculation corroborates our previous results.
Before blowing up, the contours of constant core mass are roughly parallel to the contours
of constant mass loss, hence the stars will experience an almost constant mass loss rate for a
significant fraction of their evolution, which gives more credibility to the previous evaporation
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times.

Figure 4.7: We plot the result for three stars with same starting mass but different radius, overlayed
on the mass loss rate result from Figure 4.3. The colored curves represent countours of constant
core mass. The direction of evolution is indicated with arrows.

4.4 Distance From the Black Hole

We carried out our calculations assuming a distance of 0.05pc from the SMBH. This was part
of a choice of condensing multiple parameters of the flux in a single one, the fraction of the
Eddington accretion rate, ṁ. Since the flux scales as 1

d2
, we can adjust ṁ while keeping d

the same to achieve any effective d: ṁeff = ṁdeff
d

2
. The mass loss rate scales as the square

root of the flux, so it scales as 1/d. Hence, an increase in distance of a factor of 10, to reach
0.5pc, would decrease the mass loss rate only by a factor of 10. While this would exclude a
section of the parameter space, it doesn’t completely preclude the evaporation from affecting
all stars. In the other case in which the star is even closer instead, the mass loss rate would
increase. This feature, of linear scaling with distance allows photoevaporation to be relevant
across multiple length scales, which gives it a higher chance of filling the gaps left by the other
known processes that affect the distribution of red giants.

4.5 Implications for Other Galactic Centres

Our findings are applicable to other galaxies with an active SMBH. During all of our calcu-
lations, we made minimal assumptions that are dependent on the choice of galaxy. These
are the mass and Eddington luminosity of the central SMBH, which could be easily modified
in our code. As Eddington rate scales with mass, we expect the flux to be greater for lager
supermassive black holes. As long as the spectrum remains mostly in the EUV, and doesn’t
move to even higher photon energies, which would require new physical processes to be
investigated.

Future studies can build upon our model to investigate the role of photoevaporation in shaping
the stellar population of other galactic centres, providing valuable insights into the processes
governing galactic evolution.
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4.6 Other Stellar Types

While our investigation focused on red giant stars, photoevaporation could also affect other
star types in the vicinity of supermassive black holes. However, the details of the process
could be very different than they are for red giants, as different gravitational potentials and
densities would lead to a different photoevaporative regime, as mass loss rate is limited by
the total power radiation can deposit in the star. Stars with deep potentials would be in the
”energy-limited” regime, while small compact stars would likely be in the ”photon-limited”
regime descibed by Owen & Alvarez (2016).

Many galaxies host active SMBHs, it is clearly important to understand the implications of
photoevaporation on a broader range of stars and how this process influences their evolution
and fate. as this process could play an important role in shaping the environment of galactic
centres.
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5 Concluding Remarks

Red giant stars in the gravitational potential of the galactic centre reveal a flatter distribution
than predicted by theoretical and computational models. Although some attempts to explain
this have been made, a single satisfactory explanation is currently lacking. It is likely that
multiple processes are contributing to this observational result, but those proposed so far fail
to account for the total count of missing stars.

We investigated the new proposal that radiation from the accretion disc of a supermassive
black hole can heat the outer layer of these stars above escape temperature, leading to a flow
in the form of a Parker wind. To examine this possibility, we started by confirming that the UV
flux from the black hole is sufficient to sustain the process. Our calculations indicated that red
giants of different sizes can lose a significant portion of their mass due to photoevaporation.

Past activity from the black hole, such as accretion events, could have produced enough
radiation to cause photoevaporation of nearby red giants. This led us to conclude that giant
stars indeed experience photoevaporation as initially suspected. Our findings revealed that
a significant portion of the parameter space will experience noticeable mass loss due to this
process.

To gain a better understanding of the photoevaporation process and its implications for the
observed distribution of red giants, future work could couple our model with a stellar evolution
model and run simulations on a full population of stars. Projecting the results onto observables
would give testable predictions in support of our hypothesis, and help establish whether this
process could solve the problem of missing stars.

It is important to note that photoevaporation of stars is not only relevant in the context of the
Milky Way, our closest and best example of a galaxy. We can expect this phenomenon to be
present in other galaxies as well. the recent detection of an ”ultramassive” black hole with
a mass of 30 billion solar masses (Nightingale et al., 2023) suggests that photoevaporation
could play an even more significant role in shaping the central environment of other galaxies.
If many galaxies harbor ultramassive black holes with higher masses and Eddington limits,
these black holes could sustain an even higher flux than Sgr A* and evaporate red giants on
much shorter timescales.

In conclusion, our results suggest that photoevaporation from supermassive black holes could
be a contributing factor to the missing red giants observed in the galactic centre, although
multiple processes likely play a role. Our findings have implications for our understanding of
galactic dynamics and could have broader applications in astrophysics. Further research is
needed to refine and expand upon our model and to fully explore the extent and significance
of this phenomenon. As we continue to investigate this process, we can hope to shed light
on the complex interplay between supermassive black holes and the stars that populate the
centres of galaxies, deepening our understanding of the intricate dance of celestial objects in
the cosmos.
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